
January 1999 The Delphi Magazine 17

Surviving Client/Server: Replicating
Server Constraints In The Client
by Steve Troxell

There is a constant struggle in
client/server development

about where and how to enforce
data constraints. Check con-
straints and default values can be
defined within the table definition
on the server, so data integrity is
enforced automatically by the
server regardless of the applica-
tion that is accessing the data. On
the other hand, it is often not prac-
tical to wait until we attempt to
write the record to the database to
find out we’ve entered incorrect
data. Further, if we’re going to get a
default value for a field, it would be
nice to see that default value on the
screen before we decide to save to
the database.

Traditionally, client/server pro-
jects have tried to balance both
methods by defining the con-
straints on the server side and
recreating them in code in the
client application. The client code
provides a cleaner, more robust,
handling of the validation, while
the server side constraints provide
the ultimate assurance of data
integrity, particularly from
standalone SQL utilities that
modify the data directly.

Delphi tries to simplify the syn-
chronization of constraint defini-
tions between the server and the
client by providing a conduit
through which constraints defined
on the server can flow into the
dataset components in our appli-
cations. While this technique does
the job it advertises, there are a
number of awkward points that
make it difficult to work with on
larger projects. I decided to cover
the system as Inprise intended it to
work and try to point out the pit-
falls wherever possible, then let
you decide if it’s worth the trouble.

Delphi’s Data Dictionary
Since Delphi 2, the SQL Explorer
utility has supported the concept

of a data dictionary for Delphi pro-
jects. The Data Dictionary is a
repository of predefined TField
properties for selected database
fields. With the Data Dictionary, a
given database field can be consis-
tently presented throughout a pro-
ject or across several projects,
without the need to set each TField
instance individually.

For example, let’s say you have
an application that allows entry of
a part number on several different
screens. Perhaps the part number
is always a particular format, such
as three letters followed by up to
four digits, so you would typically
want an edit mask of LLL0999 for the
part number edit control.
Normally, you would simply enter
this value into the EditMask prop-
erty of the persistent TField com-
ponent in the dataset’s Fields
Editor. If you had several different
tables that required a part number,
you would have to make sure the
EditMask property was set cor-
rectly for each TField component
in each dataset.

With the Data Dictionary, we can
define the edit mask for the part
number field externally, so that
every time we produce a TField
component for a part number, the
EditMask would be set for us auto-
matically. Not only would the
EditMask be preset for us for any
dataset we create in the project,
but also for any dataset we create
in any Delphi project using the
same database.

Let’s see the Data Dictionary in
action. Delphi ships with an exam-
ple Data Dictionary for the DBDEMOS
database. Create a new project in
Delphi and drop a TTable compo-
nent onto the form. Set the table’s
DatabaseName property to DBDEMOS
and set the TableName property to
CUSTOMER.DB. Double click the
TTable component to bring up the
Fields Editor. Then right click and

select Add All Fields from the
menu. Click on the CustNo field and
look at the Object Inspector
(Figure 1).

If you look closely, you will
notice that the CustomConstraint,
DisplayFormat, MaxValue and
MinValue properties all have preset
values that would normally be
blank. This is because these prop-
erties have been assigned specific
values in the Data Dictionary for
this particular field in this particu-
lar database. You are free to
change any or all of the values in
the field component. The Data Dic-
tionary simply provides new
default values; it does not make
them irrevocable.

To see the actual Data Dictio-
nary that is governing the DBDEMOS
database, launch the SQL Explorer
application, click Dictionary |
Select from the main menu,
and select the Borland Data Dic-
tionary. Figure 2 shows the Data

➤ Figure 1

18 The Delphi Magazine Issue 41

Dictionary’s settings for the CustNo
field.

Field properties are defined in
the Data Dictionary by creating an
‘attribute set’ with an arbitrary
name and then setting one or more
of the field properties shown in the
right pane. Attribute sets in and of
themselves are independent of any
particular field in the database.
This gives us the flexibility of
assigning the same attribute set to
more than one field in the dictio-
nary. By looking under Referencing
Fields in Figure 2 we find that the
CustNo attribute set is bound to the
CustNo fields in two tables: Customer
and Orders. We associate an attrib-
ute set with a database field in the
dictionary by drilling down to the
field in the database and assigning
an attribute set to the field (see
Figure 3).

Once an attribute set is assigned
to a database field, whenever a
TField component is created in a
Delphi dataset using the same
database, the property values
assigned in the dictionary will be
used to default the corresponding
property values in the TField com-
ponent. The key factor that makes
all this work is that the same BDE
alias is used to refer to the data-
base in both the Data Dictionary
and the Delphi project.

What you gain by using the Data
Dictionary is that you can define

selected field properties independ-
ently of any particular form or pro-
ject so that the field properties can
be applied consistently to all
occurrences of that field through-
out all your projects. Starting with
Delphi 3, the Data Dictionary also
has the ability to read field proper-
ties directly from the database’s
schema information. This means
that defaults and constraints
defined as part of the server-side
table definition can be imported
automatically into the Data Dictio-
nary. These in turn could be repli-
cated in the TField components
used in your Delphi projects.

Creating A Data Dictionary
Now that we’ve seen that a Data
Dictionary might be a useful thing,
how do we set one up? Let’s
assume we have an existing data-
base with a BDE alias called
TestData. In SQL Explorer, select
Dictionary | New from the main

menu. This brings us to the dialog
shown in Figure 4.

Dictionary Name simply identi-
fies this dictionary from other dic-
tionaries we might have set up.
Database is the BDE alias for the
database in which we will store the
dictionary information. The data
dictionary information will be
stored in a special table in this
database. Note that this is not nec-
essarily the same as the database
we are creating the dictionary for.
The Borland Sample Dictionary
applies to the DBDEMOS database,
but Inprise chose to store the dic-
tionary itself in a database called
DefaultDD. This approach may be
practical if the data dictionary
holds definitions for multiple
physical databases. For our pur-
poses here, we will store the dictio-
nary in the same database that we

➤ Above: Figure 2

➤ Right: Figure 3

➤ Figure 4

20 The Delphi Magazine Issue 41

are creating the dictionary for.
Why scatter our project data need-
lessly? Besides, by storing the data
dictionary in the same database,
we ensure that it gets backed up as
consistently as the database itself
does.

Table Name is the name of the
table which will be created in the
dictionary database to hold the
dictionary information. We can call
this table anything we want as long
as it is legal for the database we
selected. Description is an arbi-
trary text field that further defines
our dictionary. As far as I can tell,
the description is not used any-
where except for display in SQL
Explorer.

Now that we’ve created the
dictionary, we need to associate it
with the database. From SQL
Explorer’s main menu, select Dic-
tionary | Import From Database.
Then select the BDE alias for the
database we want to associate with
the dictionary. In our case this is
the same TestData database which
we used to store the dictionary
table, but remember that we could
have stored the dictionary table in
a completely different database. If
our application accessed several
different databases, we could add
any number of databases to the
dictionary. This could be helpful if
we had fields, like customer
number, that spanned multiple
databases in our system. We could
define the field properties once in
the dictionary and bind those
properties to all instances of
customer number across all the
databases in the dictionary.

It’s important to note here that
we aren’t really adding databases
to the dictionary, we are adding
BDE aliases, in other words point-
ers to the actual databases. The
only way the Data Dictionary

information can get integrated into
the datasets in your applications is
if they refer to the database by its
BDE alias.

Importing Server Constraints
Once we import a database into the
dictionary, field properties defined
in the database’s metadata, such
as defaults and check constraints,
are automatically imported into
the dictionary. Our example data-
base includes a table called
Employee defined as shown in List-
ing 1. Let’s see what the Data Dic-
tionary gave us for this table
simply by importing it.

If we look at the bottom of Listing
1 we see that JobIDhas a check con-
straint on it, and three fields have
default values. The default value
for DateOfHire is the SQL Server
function getdate() which returns
the current date and time.

CREATE TABLE Employee(
EmpID char(9) NOT NULL,
FirstName varchar(20) NOT NULL,
MiddleInit char(1) NULL,
LastName varchar(30) NOT NULL,
JobID smallint NOT NULL DEFAULT 1,
CONSTRAINT CK_JobID CHECK (JobID > 0),

JobLevel smallint NOT NULL DEFAULT 10,
PubID char(4) NOT NULL,
DateOfHire datetime NOT NULL DEFAULT getdate()

)

➤ Listing 1

Figure 5 shows the Data Dictio-
nary after importing the database.
Under the Databases branch we
have entries for all the tables and
all the fields in each table. Notice
that our DataDictionary table, the
one we set up to hold the dictio-
nary information, is shown here
too. Under the Employee table, we
also see an entry for our check con-
straint, with the actual constraint
expression stored in the
ImportedConstraint property. The
Data Dictionary records this as a
record level constraint rather than
a field level constraint.

Specific field properties such as
defaults are not stored directly
with the table’s field definition
under Dictionary | Databases.
Instead, field properties are stored
separately in an attribute set.
Figure 5 shows the attribute sets
that were automatically generated
when we imported the TestData
database. Each attribute set is
then bound to the actual database
field it applies to (see the Refer-
encing Fields section). When
importing server-side constraints,
the Data Dictionary automatically
generates an attribute set name
based on a combination of the

➤ Figure 5

22 The Delphi Magazine Issue 41

table name and field name. We can
rename these if we wanted to. The
default values themselves are
reflected in each attribute set’s
DefaultExpression property.

Creating a new attribute set is as
simple as right clicking within the
Attribute Sets branch in the
treeview and selecting New. From
there you name your attribute set,
fill out the properties page (Figure
2), then bind the attribute set to a
field (Figure 3).

The Delphi Side Of Things
As we said at the beginning, the
properties defined in the dictio-
nary’s attribute set are used to
pre-populate the properties in the
TField component when we create
persistent field components for
our Delphi datasets. Whether the
value in the attribute set property
was set by hand or imported from
the server makes no difference to
how it gets linked into our Delphi
projects.

The check constraints, on the
other hand, do not pop up in our
datasets automatically and require
a bit more manual intervention.
After adding a dataset component
to your project and setting it
appropriately (TQuery.SQL or
TTable.TableName), select the Con-
straints property and click. To
bring up the property editor you
must right click the component.
Then select Read From Dictionary
to load any check constraints that
are defined in the dictionary for the
table. Imported constraints will
appear in the ImportedContraints
property (Figure 6).

Once the constraint and default
values are defined, Delphi takes
care of enforcing them. When a
new record is inserted in the
dataset, any field with a
DefaultExpression will be pre-
populated.

Interestingly enough, the default
expressions are handled by the
BDE and allow certain
server-specific function calls to be
made. For example, Listing 1 shows
the default for the DateOfHire field
to be the SQL Server function
getdate(). If we examine the Data
Dictionary and the TField compo-
nent for this field we find that the

getdate() function call is propa-
gated all the way down the line,
even though this is a function that
Delphi knows nothing about. How-
ever, when we insert a new record
into the dataset, the DateOfHire
field is correctly prepopulated
with the current date and time.

The Delphi VCL is handling this
by passing DefaultExpression
through the BDE to handle
server-specific function calls. This
is handled completely in the BDE
layer (most likely in the SQL Links
driver). There also seems to be
support for only a limited subset of
the server-side functions. While
Delphi can figure out what to do
with the getdate() function call, it
cannot resolve calls to the func-
tions user_name() or rtrim(), for
example. When importing defaults
into the Data Dictionary which
make use of server-side functions
that the BDE does not support, the
default will be brackets with SQL
comment delimiters in the Data
Dictionary (that is, /* user_name()
*/). This default still appears in the
DefaultExpression property of any
TField components you set up for
that field, but the default value
itself will be ignored.

Some further notes on using
getdate() as a default value are
useful here. When a record is
inserted into a dataset and the
default value is applied, the cur-
rent date and time used in
response to getdate() is the date
and time as it is set on the client
workstation, not the server as you
would get with a server-side
default. Also bear in mind that the
current time value will reflect the
moment the record was inserted
into the dataset component, not
the moment that the record actu-
ally was stored in the database.
Again, a subtle difference from a
true server-side default.

When the record is posted in the
dataset, if any of the check con-
straints are violated, the post will
be aborted and an error message
displayed. The generic error mes-
sage for a constraint violation is
rather bland: Record or field con-
straint failed. JobID > 0. Fortu-
nately, you can supply your own
text for constraint violations by
setting the ErrorMessage property
of the constraint (which can also
be predefined in the Data
Dictionary).

Quirks,
Aberrations And Pitfalls
What I’ve given you up to now is
how the Data Dictionary is sup-
posed to work. It largely does work
as advertised, but if I were to leave
you now, you would quickly run
into problems making the Data Dic-
tionary work. There are a number
of oddities in the system that you
will only find out about through
trial-and-error, or, like me, through
some very helpful participants in
the Borland newsgroups.

BDE AliasName Versus
TDatabase.DatabaseName
As I’ve been saying, the entire Data
Dictionary system revolves
around using the same BDE alias to
refer to the database in your Delphi
applications as in the Data Dictio-
nary. It turns out that Delphi is very
picky about this matter. Most data-
base applications would use a
TDatabase component to handle
the database connection and then
link all the dataset components to
the TDatabase component (by
setting each TBDEDataset.Database
Name equal to the TDatabase.
DatabaseName). However, if you do
this, Delphi will not automatically
import any information from the
Data Dictionary. Further, when you

➤ Figure 6

January 1999 The Delphi Magazine 23

try to import check constraints
from the Constraints property
editor, the Read From Dictionary
menu item will be disabled. You
must set the TBDEDataset.
DatabaseNameproperty to the actual
BDE alias name for the database.
You can always hook the dataset
back to the TDatabase after you’ve
loaded the property values from
the Data Dictionary.

If you right click on a field in the
Fields Editor you will see a number
of menu items at the bottom of the
menu related to attributes sets
from the Data Dictionary. You can
manually associate a TField with
an attribute set by selecting Asso-
ciate Attributes from the menu.
You then pick the desired attribute
set from a list of choices for the
current Data Dictionary. This is the
technique you would use if you did
not want to link your dataset com-
ponents to the BDE alias name
directly in order to load the
property defaults automatically.

In fact, you will have to manually
associate your fields in either case.
When you let Delphi automatically

load the default property values, it
links to the correct attribute set to
get the correct property informa-
tion but then forgets all about that
association. If you right click on the
field and look at the menu items
related to the Data Dictionary,
many of them are disabled as
though there is no association with
an attribute set. You have to define
this association by hand even
though Delphi loaded the property
values correctly.

Reflecting Dictionary
Changes In The Datasets
Why do we care about preserving
the attribute set association if
Delphi will load the property
values anyway? Because once
you’ve imported all the constraints
and defaults from the database, the
occasion is bound to arise when
you’ll need to change one or more
of these definitions on the server.
For example, let’s say the
Employee.FirstName field went from
having no default to a default of an
empty string. Once this change is
made on the server, we need to

re-import the Employee table into
the Data Dictionary. We do this by
selecting the Employee table in the
Data Dictionary, right clicking, and
selecting Import To Dictionary
from the context menu. Now the
new default is reflected in the Data
Dictionary. At this point, all our
datasets in our Delphi projects still
have no DefaultExpression for the
FirstName field.

As you can imagine, we couldn’t
very well expect the Data Dictio-
nary to crawl through the DFMs of
all our Delphi projects and change
TField property values for us. But
Inprise certainly didn’t break a
sweat making it easy for us to repli-
cate that change in our projects
ourselves. What you have to do is
hunt down all your dataset compo-
nents containing the FirstName
field, select the field in the Fields
Editor, right click, and select
Retrieve Attributes from the con-
text menu. This refreshes the
property values from the Data Dic-
tionary. Retrieve Attributes is not
enabled unless an association is
made between the TField and the

24 The Delphi Magazine Issue 41

attribute set in the Data Dictionary.
Unfortunately, the association
must always be made manually by
selecting Associate Attributes
from the TField’s context menu. At
least this is a step you only have to
do once.

Reflecting Server
Changes In The Dictionary
If you have made server definition
changes and need to re-import
those definitions into the Data
Dictionary, there are a couple of
things to look out for.

If your BDE alias for the database
is using schema caching, you’ll
have to shut down all applications
that use the BDE (including the
SQL Explorer), in order to force the
new schema information into the
cache for that database. Once
you’ve cleared the schema cache,
then you select the table in the
Data Dictionary, right click, and
select Import to Dictionary from
the context menu.

One problem I found occurs
when you remove a default value
from a field. If the Data Dictionary
previously had a default value for
that field and there is no longer a
default value assigned for that field
on the server, then after
re-importing the table from the
server the Dictionary retains the
old default value. It isn’t smart
enough to clear the default value
from the attribute set. On the other
hand, it is smart enough to delete
check constraints that no longer
exist on the server.

Case Sensitivity
Of Check Constraints
Keep in mind that there can be
some subtle differences in the logic
used by the BDE to evaluate check
constraints versus the logic used
by your database server. One point
in particular is that if your
database server evaluates string
expressions without case sensitiv-
ity, BDE will be case sensitive and
will cause some constraints to fail
that would have passed the data-
base server checking.

For example, if you have a con-
straint that a given field must con-
tain a Y or N value, this constraint
would probably be imported as

(IsActive = ‘Y’) or (IsActive =
‘N’). The BDE will test the values
strictly against the case given in
the conditional expression. A low-
ercase y or n would fail the test,
whereas if the database server is
case-insensitive, a lowercase y or n
would pass the test.

You could try to get clever and
change the constraint on the
server use SQL pattern-matching
logic to account for case sensitiv-
ity: IsActive LIKE ‘[yYnN]’. The
pattern-matching syntax used here
means ‘match any one of the char-
acters listed between the brack-
ets’. This constraint will import
into the Data Dictionary just fine,
and even be imported into your
dataset’s Constraintsproperty just
fine. But when the BDE tries to
enforce this constraint when a
record is posted in the dataset, it
will fail as though the constraint
has been violated, even if the data is
valid. The BDE cannot interpret the
pattern-matching tokens in this
expression, and unfortunately it
makes no distinction between that
failure and an actual constraint vio-
lation. However, the BDE can cor-
rectly interpret the SQL wildcard
characters % and _ when used with
the LIKE operator.

Other Odds And Ends
The Data Dictionary will not import
primary key, foreign key, unique
or nullability constraints. The
nullability one surprised me
because there is a Required prop-
erty in the Data Dictionary. Also,
the Data Dictionary will not import
any server information whatso-
ever if the BDE alias used ODBC for
connectivity. Finally, the enforce-
ment of imported defaults and
check constraints is tightly tied to
the BDE and therefore is only avail-
able for the TBDEDataset descen-
dants, not for custom dataset
components derived from the
abstract TDataset class.

Conclusion
I think there is something useful
here, but it appears half-baked.
The support in Delphi’s dataset
components to enforce con-
straints and default values is very
good. But the mechanism for

getting those constraints and
defaults from the server and into
the dataset components, in the
form of the Data Dictionary in SQL
Explorer, is weak. While it does the
job to a limited extent, there are
gaps in its support and accommo-
dating changes to the server’s
metadata is cumbersome to say
the least.

In a future issue, we’ll look at
some ways we might build upon
this framework to make up for
some of its shortfalls.

Steve Troxell is a software
engineer with Ultimate Software
Group in the USA. He can be
contacted by email at
Steve_Troxell@USGroup.com

For Delphi News
check the

Developers Review
website at

www.itecuk.com

	Delphi’s Data Dictionary
	Creating A Data Dictionary
	Importing Server Constraints
	The Delphi Side Of Things
	Quirks, Aberrations And Pitfalls
	BDE AliasName Versus TDatabase.DatabaseName
	Reflecting Dictionary Changes In The Datasets
	Reflecting Server Changes In The Dictionary
	Case Sensitivity Of Check Constraints
	Other Odds And Ends
	Conclusion

